Machine Translationness: Machine-likeness in Machine Translation Evaluation
نویسندگان
چکیده
Machine translationness (MTness) is the linguistic phenomena that make machine translations distinguishable from human translations. This paper intends to present MTness as a research object and suggests an MT evaluation method based on determining whether the translation is machine-like instead of determining its human-likeness as in evaluation current approaches. The method rates the MTness of a translation with a metric, the MTS (Machine Translationness Score). The MTS calculation is in accordance with the results of an experimental study on machine translation perception by common people. MTS proved to correlate well with human ratings on translation quality. Besides, our approach allows the performance of cheap evaluations since expensive resources (e.g. reference translations, training corpora) are not needed. The paper points out the challenge of dealing with MTness as an everyday phenomenon caused by the massive use of MT.
منابع مشابه
La tradautomaticidad: un concepto aplicado a la evaluación de sistemas de traducción automática
In this article we introduce the concept of machine translationness and its use for MT evaluations. Machine translationness is the output generated by an MT system which is unlikely to be attributed to a human translator. Machine translationness is closely related to the translation quality. The more instances of machine translationness the worse is the translation. In order to show the use of ...
متن کاملThe Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language
Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...
متن کاملA Comparative Study of English-Persian Translation of Neural Google Translation
Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...
متن کاملMT Evaluation: Human-Like vs. Human Acceptable
We present a comparative study on Machine Translation Evaluation according to two different criteria: Human Likeness and Human Acceptability. We provide empirical evidence that there is a relationship between these two kinds of evaluation: Human Likeness implies Human Acceptability but the reverse is not true. From the point of view of automatic evaluation this implies that metrics based on Hum...
متن کاملA new model for persian multi-part words edition based on statistical machine translation
Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...
متن کامل